
www.manaraa.com

Teaching the Analysis of Algorithms with Visual ProofsMichael T. Goodrich� Roberto TamassiayDept. of Comp. Sci. Dept. of Comp. Sci.Johns Hopkins Univ. Brown Univ.Baltimore, MD 21218 Providence, RI 02912goodrich@cs.jhu.edu rt@cs.brown.eduAbstractWe describe an approach for visually teaching importantproofs in the Junior-Senior level course on the design andanalysis of data structures and algorithms (CS7/DS&A).The main idea of this educational paradigm is to justifyimportant claims about data structures and algorithmsby using pictures that visualize proofs so clearly that thepictures can qualify as proofs themselves. The advan-tage of using this approach for DS&A is that it augmentsor even replaces inductive arguments that many students�nd di�cult. Moreover, this paradigm communicates im-portant algorithmic facts in a compelling way for studentswho are more visually-oriented. We illustrate this tech-nique by giving examples of visual proofs of several keyconcepts in DS&A.1 IntroductionIn this era of real-time video games and MTV, studentsthese days seem more visually-oriented than ever. Theylearn most naturally by seeing a concept described witha picture, and they remember that concept by recallingthe picture that goes with it. This visual orientation isactually quite natural, for we humans devote an immenseamount of brain power to the processing of visual infor-mation. We feel that we can realize great educationalbene�ts by �nding visual ways of presenting the key ideasof important computer science concepts.In this paper we address the communication of keyconcepts in the design and analysis of data structures andalgorithms, which are topics taught in a course knownby the acronyms CS7 and DS&A (we will use DS&A).This course is full of powerful ideas that have many ap-�The work of this author is supported by the U.S. Army Re-search O�ce under grant DAAH04{96{1{0013, and by the NationalScience Foundation under grant CCR{9625289.yThe work of this author is supported by the U.S. Army Re-search O�ce under grant DAAH04{96{1{0013, and by the NationalScience Foundation under grant CCR{9423847.

plications, yet key concepts in DS&A are not fully com-prehended by many students. We feel that this lack ofcomprehension is due to the fact that these concepts areoften presented and justi�ed by invoking sophisticatedmathematical arguments. We argue in this paper thatthis mathematical sophistication is often unnecessary, be-cause key ideas of DS&A can be presented visually.As a justi�cation of the potential of the visual alterna-tive to teaching DS&A, we describe simple visual proofsof several core topics in DS&A, including the following:� summing linear terms,� counting nodes in a binary tree,� analyzing binary tree traversal,� analyzing bottom-up heap construction,� rebalancing AVL trees via rotations.Some of the visual proofs we present are new, to the bestof our knowledge, while others are known but possiblyunder-utilized.1.1 Related WorkThe trend towards visual ways to presenting importanttopics of DS&A �nds its inspiration in the work of Brownand Sedgwick on algorithm animation and visualization [4,5, 11, 12], as well as that of Stasko [13] and others [2, 3].This work illustrates the power of visualization for com-municating how algorithms work and how they transformtheir inputs. In addition, the authors include several ad-ditional visual ways of presenting ideas in DS&A in theirrecent book [7].Many of the visual proofs we present in this paperaugment proofs that use mathematical induction (e.g.,see Manber [10]). We feel that induction is a beautifuland powerful mathematical tool, but it nevertheless issomething that many students �nd mysterious. One ofthe motivations for our use of visual proofs is to reduceour reliance on mathematical induction as the only way ofjustifying important concepts in DS&A, and thereby ef-fectively educate students that seem to never comprehendthis proof technique.We describe several visual proofs in the remainder ofthis paper, beginning with a well-known summation iden-tity that is usually justi�ed using mathematical induc-tion.



www.manaraa.com

2 Combinatorial ArgumentsOne of the �rst analyses that students see in DS&A is ananalysis of the worst-case running time an algorithm suchas bubble-sort, insertion-sort, selection-sort, or quick-sort.Each of these analyses use the following summation:nXi=1 i = 1 + 2 + 3 + � � �+ (n� 2) + (n� 1) + n:This summation arises in the analyses because of an it-eration performed by each of the algorithms where thenumber of operations performed inside the loop increasesby a �xed, constant amount with each iteration. Thissummation has the following identity:

1 2 n0

1

2

n

3

3

...

1 n/2
0

1

2

n

3

2

n+1

...
(a) (b)Figure 1: Visual justi�cations of Proposition 2.1. Both illus-trations visualize the identity in terms of the total area coveredby n unit-width rectangles with heights 1; 2; : : : ; n. In (a) therectangles are shown to cover a big triangle of area n2=2 (basen and height n) plus n small triangles of area 1=2 each (base1 and height 1). In (b), which applies only when n is even,the rectangles are shown to cover a big rectangle of base n=2and height n+ 1.Proposition 2.1: For any integer n � 1, we havenXi=1 i = n(n+ 1)2 :We give two visual proofs of this fact in Figure 1. Theillustration in Figure 1.a is less well known as the onein Figure 1.b, but it applies for all values of n whereasthe illustration in Figure 1.b only applies when n is even(although it is fun exercise to ask students to providean analogous visual proof for the case when n is odd).Both of these visual proofs augment a well-known proofby induction (e.g., see [7]).

3 Binary Tree AlgorithmsAlmost immediately after giving the above summationidentity, the curriculum for DS&A turns to discussions ofseveral topics involving binary trees, including their com-binatorial properties and their uses as search structures.We discuss some visual justi�cations for several facts in-volving binary trees in this section.3.1 Counting Nodes in a Binary TreeBinary trees have several interesting structural proper-ties, which are not shared by general trees. A simple, butimportant such property is the following:Proposition 3.1: In a proper binary tree, where eachinternal node has two children, the number of externalnodes is 1 more than the number of internal nodes.Proof: We justify this fact using a simple visual proof,which is actually a proof-by-induction in \disguise." LetT be a proper binary tree. If T has only one node, thenthis node is external, and the property holds. Otherwise,remove from T an (arbitrary) external node w and itsparent v, which is an internal node. If v has a parent u,reconnect u with the former sibling z of w, as shown inFigure 2. This operation removes one internal node and
v

u

wz

u

z

u

z(a) (b) (c)Figure 2: The operation that removes an external node andan internal node in the justi�cation of Proposition 3.1.one external node, and it leaves the tree being a properbinary tree. By repeating this operation, we shall even-tually obtain a binary tree with a single external node.Since the same number of external and internal nodes areremoved by this sequence of operations, and we end upwith a single external node, we conclude that the numberof external nodes of T is 1 plus the number of internalnodes.We next discuss a common algorithm that is per-formed on binary trees.3.2 Analyzing Binary Tree TraversalOne of the prime uses of binary trees is to store objects,and these objects are often enumerated by using binarytree traversal algorithms, such as the preorder, inorder,and postorder traversal algorithms. Viewed in an object-oriented framework, these tree-traversal algorithms are all



www.manaraa.com

forms of iterators (or enumerations in Java). Each traver-sal visits the nodes of a tree in a certain order, which visitseach node exactly once. However, we can unify these tree-traversal algorithms into a single framework, by relaxingthe requirement that each node is visited exactly once.The resulting traversal is called the Euler tour traver-sal [8, 9]. The advantage of the Euler tour traversal isthat it allows for more general kinds of tree traversals tobe easily expressed.
3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

Figure 3: Euler tour of a binary tree.Intuitively, the Euler tour traversal of a binary tree Tcan be informally de�ned as a walk around T , where westart by going from the root towards its left child, viewingthe edges of T as being \walls" that we always keep toour left. (See Figure 3.) Each node v of T is encounteredthree times by the Euler tour:� \On the left" (before the Euler tour of v's left sub-tree)� \From below" (between the Euler tours of v's twosubtrees)� \On the right" (after the Euler tour of v's rightsubtree).If v is external, then these three \visits" actually happenat the same time.The preorder, inorder, and postorder traversals of Tare equivalent to an Euler tour, such that each node isvisited when encountered on the left, from below, or onthe right, respectively. The time complexity of the pre-order, postorder, and inorder tour traversals of a binarytree with n nodes are easy to analyze using the Euler tourtraversal and its visualization in Figure 3. Suppose thatvisiting a node takes O(1) time, which is often the case.In this case, we spend a constant amount of time at eachnode of the tree during the traversal, so that the overalltime complexity is O(n).3.3 Analyzing Bottom-Up Heap Construc-tionBinary trees are discussed in DS&A again in the heap-sort algorithm, where they are used to implement the

priority queue abstract data type in the heap data struc-ture. One way to present the heap-sort algorithm is toshow that we can construct a heap storing n keys (or key-element pairs) in O(n logn) time by means of n successiveinsertion operations, each taking O(logn) time, startingfrom an empty heap [14]. However, if all the keys to bestored in the heap are known in advance, there is an al-ternative bottom-up construction method, which runs inO(n) time [6]. This is a more-e�cient construction algo-rithm that can be included as one of the constructors ina Heap class. Bottom-up heap construction is shown inCode Fragment 1.Algorithm BottomUpHeap(S):Input: a sequence S storing n = 2h � 1 keysOutput: a heap T storing the keys in S.if S is empty thenreturn an empty heap (consisting of a single ex-ternal node).end ifRemove the �rst key, k, from S.Split S into two sequences, S1 and S2, each of size(n� 1)=2.Let T1 = BottomUpHeap(S1).Let T2 = BottomUpHeap(S2).Create a binary tree T with root node r storing k,left subtree T1, and right subtree T2.Perform a down-heap bubbling from the root r of T ,if necessary.return T .Code Fragment 1: Recursive bottom-up heap construction.Bottom-up heap construction is asymptotically fasterthan incrementally inserting n keys into an initially-emptyheap, as the following proposition shows.Proposition 3.2: The bottom-up construction of a heapwith n keys takes O(n) time.Proof: Let us use a function t(n) to denote the runningtime of this algorithm, where n is the number of keys. Weclaim that t(n) is O(n). Since the algorithm is recursive,one approach to justifying this claim is to characterizethe function t(n) by the recurrence relationt(n) � � b if n � 12t(n=2) + c logn otherwise,where b and c are constants. Analyzing this formula usu-ally involves reducing it to a closed form showing thatt(n) is O n+ log nXi=2 � i2i (n+ 1)�! ;



www.manaraa.com

which is then solved by using induction and some factsfrom Calculus. We o�er instead the visual proof illus-trated in Figure 4.
4

6

207

811

5

9

1214

15

2516 23 27Figure 4: Visual justi�cation of the linear running time ofbottom-up heap construction, where the paths associated withthe internal nodes have been highlighted with alternating col-ors. For example, the path associated with the root consistsof the internal nodes storing keys 4, 6, 7, and 11, plus an ex-ternal node. Also, the path associated with the right child ofthe root consists of the internal nodes storing keys 6, 20, and23, plus an external node.Let T be the �nal heap, and let v be an internal nodeof T , and let T (v) denote the subtree of T rooted at v.In the worst-case, the time for forming T (v) from thetwo recursively-formed subtrees rooted at its children isproportional to the height of T (v). The worst-case occurswhen down-heap bubbling from v traverses a path fromv all the way to a bottommost external node of T (v).Consider now the path p(v) of T from node v to itsinorder successor external node, i.e., the path that startsat v, goes to the right child of v, and then goes downleftward until it reaches an external node. We say thatpath p(v) is associated with node v. Note that p(v) isnot necessarily the path followed by down-heap bubblingwhen forming T (v). Clearly, the length (number of edges)of p(v) is equal to the height of T (v). Hence, forming T (v)takes in the worst case time proportional to the lengthof p(v). Thus, the total running time of bottom-up heapconstruction is proportional to the sum of the lengths ofthe paths associated with the internal nodes of T .It is easy to see that for any two internal nodes u andv of T , paths p(u) and p(v) do not share edges, althoughthey may share nodes (see Fig. 4). Hence, the sum of thelengths of the paths associated with the internal nodesof T is no more than the number of edges of heap T ,i.e., no more than 2n. We conclude that the bottom-upconstruction of heap T takes O(n) time.

Algorithm rotate(x):Input: a node x of a binary search tree T that has botha parent y and a grandparent zOutput: tree T restructured1: Let (a; b; c) be a left-to-right (inorder) listing of thenodes x, y, and z, and let (T0; T1; T2; T3) be a left-to-right (inorder) listing of the four subtrees of x, y, andz not rooted at x, y, or z.2: Replace the subtree rooted at z with a new subtreerooted at b3: Let a be the left child of b and give a the roots of T0and T1 as its left and right children, respectively.4: Let c be the right child of b and give c the roots of T2and T3 as its left and right children, respectively.Code Fragment 1: Rotation in a binary search tree.3.4 The Analysis of AVL TreesOne the prime uses of binary trees is to support the binarysearch tree data structure, and one of the most popularbinary search trees is the AVL tree [1,7]. A di�cult caseanalysis is often included in DS&A for rebalancing AVLtrees after insertions and deletions. We o�er a unifyingvisual approach.Let w be a node in an AVL tree that has just beenupdated because of an insertion (the deletion method issimilar). Let x be the �rst node we encounter in going upfrom w toward the root of T such that the grandparentz of x is unbalanced. Note that node x could be equalto w. Also, let y denote the parent of x, so that y isa child of z. Since node z became unbalanced becauseof an insertion in the subtree rooted at its child y, theheight of y is equal to 2 plus the height of the siblingof y. We now rebalance the subtree currently rooted atz by performing a rotation operation, which is describedin Code Fragment 1 and is schematically illustrated inFigure 5. This operation temporarily renames the nodesx, y, and z as a, b, and c, so that a is left of b and b isleft of c (in an inorder traversal listing). It then replacesz with the node called b, makes the children of this nodebe a and c, and makes the children of a and c be thefour previous children of x, y, and z (other than x andy), while maintaining the inorder relationships of all thenodes in T .This rebalancing operation is called a rotation becauseof a geometric way we can visualize the way it restructuresT . If b = y (see again Code Fragment 1), the executionof method rotate is called a single rotation, for it canbe visualized as \rotating" y over z (see Figure 5(a){(b)). Otherwise, if b = x, this operation is called a doublerotation, for it can be visualized as �rst \rotating" x overy and then over z (see Figure 5(c){(d)). Some researchers



www.manaraa.com

T0

T1

T2

T3

h h-1 or h
h or h+1

h

c = x
b = y

a = z

T0 T1 T2

T3

h-1 or hc = xhh or h+1h

b = y

a = z

T0

T1

T2

T3 T0

T1

T2 T3

c = y c = y

b = x

b = x

a = z
a = zh or h+1 h or h+1

h

h

h-1 or h

h-1 or h

h

h

0 or +1
-1 or 0

-2

0 or +1-1 or 0

0 or +1

-1 or 0

0 or +1

-2

0 or +1 -1 or 0

-1 or 0

single rotate

double rotate

(a) (b)

(c) (d)Figure 5: Schematic illustration of method rotate described in Code Fragment 1. We show next to nodes a, b and c thesigned di�erence between the heights of the right and left subtree. Also, we show next to subtrees T0; : : : ; T3 their height:(a){(b) single rotation; (c){(d) double rotation.separate these two kinds of rotations as separate methods;we have chosen however a rotatemethod that uni�es thesetwo types of rotations.The prime reason for a rotation is to change the heightsof nodes in T so as to restore balance. Recall that we ex-ecute a rotation operation because z, the grandparent ofx, is unbalanced. Moreover, this unbalance is due to oneof the children of x now having to large a height relativeto the height of z's other child. As a result of a rotationwe move up the \tall" child of x while pushing down the\short" child of z. Thus, after performing a rotation, allthe nodes in the subtree now rooted at the node we calledb are balanced (see Figure 5). (A similar visual analysisworks for deletions.)4 ConclusionIn this paper we present visual proofs for several key con-cepts taught in the design and analysis of data structuresand algorithms course (CS7/DS&A), and we argue thatthese proofs are e�ective ways of teaching powerful ideasof DS&A without resorting to sophisticated mathematics.We have not tried to present an exhaustive repetoire ofvisual proofs, however, and we encourage the reader to de-velop visual proofs of his or her own. In addition, we referthe reader interested in further examples of visual waysof presenting important concepts for DS&A (and also theFreshman-Sophomore data structures course (CS2)) tothe recent book by the authors [7].References[1] G. M. Adel'son-Vel'skii and Y. M. Landis. An algorithmfor the organization of information. Doklady Akademii

Nauk SSSR, 146:263{266, 1962. English translation inSoviet Math. Dokl., 3, 1259{1262.[2] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia. Amodel for algorithm animation over the WWW. ACMComput. Surv., 27(4):568{572, 1995.[3] J. L. Bentley and B. W. Kernighan. A system for algo-rithm animation. Computing Systems, 4(1):5{30, Winter1991.[4] M. H. Brown. Algorithm Animation. MIT Press, Cam-bridge, 1988.[5] M. H. Brown and R. Sedgewick. Techniques for algorithmanimation. IEEE Software, 2(1):28{39, Jan. 1985.[6] R. W. Floyd. Algorithm 245: Treesort 3. Communica-tions of the ACM, 7(12):701, 1964.[7] M. T. Goodrich and R. Tamassia. Data Structures andAlgorithms in Java. John Wiley and Sons, New York,1997.[8] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Mass., 1992.[9] R. M. Karp and V. Ramachandran. Parallel algorithmsfor shared memory machines. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, pages 869{941. Elsevier/The MIT Press, Amsterdam, 1990.[10] U. Manber. Introduction to Algorithms: A Creative Ap-proach. Addison-Wesley, Reading, Mass., 1989.[11] R. Sedgewick. Algorithms. Addison-Wesley, Reading,MA, 1983.[12] R. Sedgewick. Algorithms in C++. Addison Wesley,Reading, MA, 1992.[13] J. T. Stasko. Simplifying algorithm animation withtango. In Proc. IEEE Workshop on Visual Languages,pages 1{6, 1990.[14] J. W. J. Williams. Algorithm 232: Heapsort. Communi-cations of the ACM, 7(6):347{348, 1964.


